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ABSTRACT 

The diffusion method is a good approximation inside the dense core of a cloud, but not at the more tenuous 
boundary regions. Also, it breaks down in regions where the density of scattering droplets is zero. We have 
enhanced it by using hardware cell projection volume rendering at cloud border voxels to account for the 
straight line light transport across these empty regions. We have also used this hardware volume rendering at 
key voxels in the low-density boundary regions to account for the multiple anisotropic scattering of the 
environment. 
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1. INTRODUCTION 
The appearance of a cloud is produced by multiple 
scattering of the incident illumination. The phase 
function for the result of two scattering events is the 
convolution of their two phase functions, and the 
convolution of any non-delta-function phase function 
with itself enough times approaches a uniform 
distribution, as shown in [Stam95]. In the interior of 
a cloud, the water droplets are dense, and the mean 
free path of a photon is short, so the large number of 
scattering events in a voxel will cause it to radiate 
scattered light diffusely. In the diffusion 
approximation, explained briefly in section 2 below, 
the equation for radiance transport is approximated 
by an equation for diffuse light transport, which can 
be more easily solved by multigrid relaxation. Kajiya 
and von Herzen [Kaj84] first proposed it to the 
computer graphics community, and Stam [Stam95] 

gave the first practical implementation for radiance 
transport in clouds. The diffusion calculations in 
[Stam95] assume a rectangular solid of non-zero 
cloud droplet density, which is unrealistic for actual 
clouds. Furthermore, Mie scattering from small water 
droplets is concentrated in the forward direction, and 
this directional scattering is evident in the subtle 
color and intensity effects at the edges of a cloud, 
where the expected number of scattering events is 
not large enough to produce anisotropy. The goal of 
our work is photorealistic rendering of clouds using 
the diffusion approximation on the dense core, with 
modifications to account for regions of zero droplet 
density, and multiple anisotropic scattering at the 
edges. 

Older work on global illumination in participating 
media is well summarized in [Per97] and the 
references cited there. The basic Monte Carlo 
method of tracing random rays from the light source 
or the viewpoint suffers from the problem that few 
paths from the viewpoint reach the light source, and 
vice-versa. By tracing photons from the light source, 
accumulating scattering events into a voxel data 
structure called a photon map, and then doing a final 
gather from the viewpoint by ray tracing the photon 
map, Wann Jensen and Christensen [Jen98] solve 
this problem. However, in realistically large and 
dense clouds, the photons will basically make a 

 
 
 
 



random walk through the dense medium, and 
progress a straight line distance O( n ) in n 
bounces, total path length n, or computation time n. 
Thus illumination on one side of a dense cloud will 
take a very long time to reach the other side. 
Recently, Premoze, Ashikmin, and Shirley [Prem03] 
have applied the path integral method from quantum 
mechanics to make a more efficient approximation, 
but it can be biased because it takes into account 
mainly the forward scattering, and does not account 
for all light paths. 

Jensen et al. [Jens01] proposed  an approximate 
solution to the diffusion equations, using a dipole of 
two point sources, one above and one below a planar 
object surface, and a simple analytic solution for the 
diffusion equation for point sources in a 
homogeneous medium. Jensen and Buehler [Jens02] 
applied this to objects represented by surface point 
clouds, using an octree hierarchy to cluster the 
effects of irradiance at points far from the position 
being rendered. Mertens et al. [Mer03] used a similar 
hierarchical method on polygonal surfaces, with a 
semi-analytic integration for the effect of the 
irradiance on a triangle. Lensch et al. [Len02] used 
triangle-based piecewise linear basis functions for 
global transport, and texel-based piecewise constant 
basis functions for local transport. Dachsbacher and 
Stamminger [Dach03] combine this local/global 
transport separation with the hierarchical evaluation 
into a texture-based approximation, which can be 
evaluated in real time using programmable vertex 
and fragment shaders. The dipole approximation 
used in all these methods assumes that the surface is 
planar, and that the medium is uniform and optically 
thick. These methods give plausible realistic 
renderings for more complex geometry, but cannot 
deal with the non-diffuse scattering discussed above 
at the tenuous edges of clouds, where the mean free 
path of a photon is comparable to the geometry 
feature size, and the diffusion approximation is 
invalid. 

2. DIFFUSION APPROXIMATION 
The following is a brief summary of the derivation of 
the diffusion approximation. For details, see [Ish78]. 
(Note that the derivation in [Stam95] is incorrect, and 
Stam’s equations differ from Ishimaru’s by factors of 
3 in several terms.) 
The equation for light propagation in a participating 
medium is 
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where X is 3D position, ω and ω’ are ray directions 
on the unit sphere, I(X,ω) is radiance at X flowing in 
direction ω, s is length along the ray in direction ω, 
κ(X) is the extinction coefficient, a is the albedo, the 
scattered fraction of the extinction, and p(ω,ω’) is the 
phase function giving the probability density that 
scattered light from ω’ scatters to ω. (Note that in 
[Ish78],  p(ω,ω’) also includes the albedo a.) 
In a cloud, κ(X) = ρ(X) σt, where ρ(X) is the number 
density of water droplet particles, and σt is the 
extinction “cross section” per particle. Also let σs = a 
σt be the scattering cross section per particle, and σa 
= σt – σs be the absorption cross section per particle.  
Assume that the phase function p(ω,ω’) depends only 
on the angle θ  between the unit vectors ω and ω’, 
and let 
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be the average cosine of the scattering angle θ. For 
the Henyey-Greenstein scattering phase function 
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which we use, p1 = g. 
Let Iri(X, ω) be the reduced incident radiance, which 
can be computed from the sun and sky radiance 
Isky(ω) by the attenuation formula 
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be the “diffuse” radiance that has been scattered at 
least once. Approximate Id(X, ω) with the first order 
dependence on the unit direction vector ω : 

            Id (X,ω) =  I0(X) + I1(X) · ω . 
Substituting  
        I (X,ω) = Iri(X, ω) + I0(X) + I1(X) · ω              (3)      
into equation (1), and integrating ω over the unit 
sphere, we get a scalar equation. Then multiplying by 
the unit vector ω and integrating over the unit sphere, 
we get a vector equation. We solve this vector 
equation for I1(X) in terms of I0(X) and its 
derivatives, and substitute the result into the scalar 
equation, which also involves the divergence of 
I1(X). By doing some vector algebra, vector calculus, 
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and mathematical manipulations on these equations, 
we end up with the single “diffusion” equation 
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where 
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is the “transport cross section”, 
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is the first scattered external illumination averaged 
over the unit sphere, and 
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 is its directionally weighted average, a vector. 
The incident sun and sky illumination are assigned to 
direction bins on the subdivided surface of a unit 
cube, as shown in Figure 1b). The power in bin i is 
Isky(ωi)∆ωi , where ∆ωi is the solid angle of bin i. 
This power is propagated into the voxels of the cloud 
volume to compute Iri(X,ωi) by tracing a dense 
collection of rays in the direction ωi , starting from 
the external faces of the box enclosing the cloud. 
Each ray intersects the voxels in a collection of 
segments Sj, along which the attenuation integral in 
(2) can be accumulated. The lengths l(Sj) of these 
segments weight the contributions of  Iri(X,ωi)  to the 
integrals in (5) and (6) at the voxel X. So the 
contribution to the integral (5) of a ray segment Sj is 
ρ(X) σs Iri(X,ωi) ∆ωi l(Sj). The phase function 
p(ω,ω’) depends only on the angle θ between ω and 
ω’. Thus the contribution of light flowing in 
direction ω’ = ωi to the integral (6) lies only along 
direction ωi , since the other components cancel by 
symmetry. It therefore equals ρ(X) σs Iri(X,ωi) ∆ωi 

l(Sj) p1 ωi . After these contributions are summed for 
all rays in direction bin i, the values of the sums for 
(5) and (6) in each voxel are normalized by dividing 
by the sum of the lengths l(Sj) of the segments it 
contains. The scalar Q0(X) and the vector Q1(X) are 
saved at each voxel X. 
The sky and sun colors were computed taking into 
account Rayleigh scattering from the molecules in 
the atmosphere, using the methods of [Nis96], 

[Dob97], and [Pre99], and Mie scattering from 
aerosols, using the methods of [Slo02]. 

Boundary Conditions 
For the boundary conditions at the surface of the 
voxel regions containing non-zero droplet density, 
we really want the inward diffuse radiance Id(X, ω) to 
be exactly zero for all directions ω with ω · n > 0, 
where n is the inward surface normal. But this is 
impossible for a function of the form I0(X,ω)+ 
I1(X, ω)·ω  unless the function is zero for all ω. So an 
approximate condition of no total inward flow is 
used: 

      (ω · n) dω = 0, ∫
π
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where the integral is over the inward hemisphere. 
After some mathematical manipulations, this results 
in the boundary condition: 
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For more details on the derivation of this equation 
and of equation (4), see [Ish78]. 

Finite Difference Solution 
To solve the partial differential equation (4) we use 
finite differences to estimate the derivatives. The 
difference for the gradient of I0 is evaluated at the 
face centers, and for the value of ρ in the first term of 
equation (4), the average of the ρ(X) for the two cells 
sharing the face is used, unless one of them has ρ = 
0, in which case the value at the other cell is used. 
Central differences are used to evaluate the gradient 
for the last term of equation (4). All this results in a 
set of linear equations relating each value I0(X) to the 
values at its six adjacent neighbors. The boundary 
condition (7) is enforced by assuming a temporary 
value of I0(Xe) at an adjacent empty cell Xe where the 
droplet density is zero, set to satisfy (7), and using it 
to compute the differences for equation (4). This 
affects the coefficients of the linear equations, which 
end up not involving I0(Xe), so the temporary value 
of I0(Xe) can be different for different full cells 
adjacent to the same empty cell Xe. 
The resulting set of linear equations can be solved 
iteratively by the Gauss-Seidel or Jacobi method, by 
setting each I0(X) to a weighted sum of its old value 
and the old values of its six neighbors, plus a 
constant term involving Q0 and Q1 that comes from 
the constant right hand side of the linear equation. 
This will take a long time for a large grid, since a 
bright spot caused by sunlight hitting one side of the 
cloud can only propagate across one adjacent cell per 



iteration, so it will take many iterations for it to affect 
the opposite side of the cloud. Therefore a multigrid 
method is used. This is like mip mapping. The data 
volume is considered as a multi-resolution octree 
hierarchy, and coarser versions of the linear 
equations are written for lower levels of the 
hierarchy. Their solutions are used to correct the 
solutions at finer levels of the hierarchy to allow for 
faster propagation, and the solution method iterates 
up and down the levels in the hierarchy until 
convergence. For details, see [Bri00]. We used the 
Hypre system API and multigrid solver from 
Lawrence Livermore National Laboratory [Hypre03]. 

3. PROPAGATION IN CLEAR AIR 
If Xe is an empty border voxel with ρ(Xe) = 0, 
adjacent across face F to a full voxel X, with ρ(X) > 
0, as shown in Figure 1a), we place a viewing cube, 
shown in Figure 1b), at the center of Xe. Then, as in 
the hemicube algorithm for radiosity, we render the 
scene, including the clouds, onto the six faces of this 
viewing cube. We used 64 by 64 resolution images 
on each cube face, and then averaged the colors into 
the 4 by 4 direction bins for each face, as shown in 
Figure 1b), to give a total of 96 direction bins for the 
six faces. 
 

Xe X 
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E G 

a) b) 

E’ 

Figure 1. a) Light propagating from an empty cell 
to a full cell. b) A viewing cube divided into bins. 

 
Figure 1a) shows several rays in the direction ωi at 
the center of direction bin i, crossing face F. Instead 
of continuing to propagate and attenuate Iri(X,ωi) to 
accumulate the values of Q0 and Q1 as described 
above, we replace the propagating value by the 
average color seen in direction bin -ωi, which is 
indicated in bold lines in Figure 1b), in order to 
include the inscattered light from the clouds. If F is 
the only face across which Xe is adjacent to a full 
cell, all directions ωi crossing F from Xe to X have 
flow towards the left, so we need only render the 
hemicube to the right of the bold line in Figure 1b). 
Similarly, if Xe is adjacent to only two full voxels, 
across faces F and G that share a common edge E, 
then the needed incoming directions fill two 
overlapping hemicubes, and we do not render the 

two half faces adjacent to the dashed edge E’ shown 
in Figure 1b). 
The diffusion approximation assumes that the clouds 
are dense, so that enough multiple scattering takes 
place to make the radiance almost independent of 
direction. As described above and in [Ish78], I1(X) 
can be computed from I0(X) and its derivatives. 
However the linear approximation (3) for I(X) is not 
valid at the edges of the cloud, where single 
scattering, and orders of multiple scattering too low 
to insure directional independence, are important. 
Therefore the approximation (3) cannot be used to 
render an image of the cloud surface.  
Instead, hierarchical volume rendering is used to 
render the volume with opacities ρ(X)σt  and voxel 
colors I0(X). (The solution described above is done 
for the red, green, and blue wavelength bands.) An  
octree hierarchy of least squares approximations to 
the color and opacity values on the various level 
cubes is precomputed, together with the RMS error 
of each approximation. Then, in a view dependent 
manner which weights the error by the projected area 
of the cube on the image, appropriate cubes are 
selected, and composited in back to front order, using 
the hardware cell-projection method. The details are 
given in [Schu01]. For this application, the algorithm 
in [Schu01] was modified to handle color, and to use 
either piecewise linear or piecewise constant 
functions in the approximation hierarchy. 
The revised values for Q0 and Q1 obtained by 
propagating the incident radiance from this volume 
rendering are used again in obtaining a new solution 
to the partial differential equation (4), and the 
sequence of PDE solution, volume rendering, and ray 
propagation is iterated until I0 stops changing 
significantly. The illumination and shadowing of the 
ground by the sky and clouds is also found using 
hardware volume rendering onto hemicubes placed 
on a ground sample grid, and the diffusely reflecting 
ground is included as a background to the volume 
rendered radiance images of the cloud. The sky 
hemisphere, colored as described above, is also part 
of the background. However the radiance of the sun 
exceeds the dynamic range of the fixed-point frame 
buffer, so the sun is not added to the sky background. 
Instead,  the direct sunlight, Isun(Xe,ωsun) is 
propagated and attenuated separately, and saved as 
Irisun(Xe,ωsun) at every voxel. Its effects are added 
separately to Q0 and Q1. 

4. FINAL GATHER 
The final rendering is a “final gather” ray tracing of 
the volume solution to equation (4). The reduced sun 
flux Irisun(Xe,ωsun) is used, together with the exact 
phase function p(ωsun, ωviewing) to give an exact final 
single scattering of the attenuated sunlight, similar to 



two pass volume rendering for shadow effects. This 
can give the brightening effect on the edges of a 
cloud when the sun is directly behind it. However, it 
cannot account for the multiple directional scattering 
of the sunlight, nor of the skylight, which contributes 
to the darker and bluer color of the edges of the 
cloud, when seen against other non-edge cloud 
regions as a background.  
To include a more accurate multiple directional 
scattering effect for the regions near the edges of the 
cloud, where the particle density is below a threshold 
T necessary for the diffusion approximation to be 
adequate, we again use volume rendering. When 
doing the final gather ray tracing per pixel, we 
determine low-density ray segments Sj where the ray 
stays within the edge region where 0 < ρ(X) < T. For 
each such segment, we integrate ρ(X)σt along the 
segment to get the optical depth Dj, put a cube at the 
“center” point cj where the integral reaches half this 
value Dj, and compute the radiance on the faces of 
the cube using volume rendering, as above. The x 
axis of the cube is aligned with the direction of the 
viewing ray, as shown in Figure 2.  
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Figure 2. Faces and subface of the viewing cube. 
 
Knowing Dj, the Poisson distribution [Poi97] can tell 
us the probability qij of scattering of scattering 
exactly i times along this segment: 
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This is only an approximation, because the scattering 
will change the direction of the ray. However, for 
small water droplets inside clouds, the scattering is 
highly peaked in the forward direction, so for the 
first few orders of scattering, it is a good 
approximation.  
To get the phase function for the result of i scattering 
events, we must convolve the phase function 
p(ω,ω’) with itself i - 1 times, using integration over 
the unit sphere. This is particularly simple for the 
Henyey-Greenstein phase function, because the 
result is the same formula, with g replaced by gi, as 

can be proved by expanding p(ω,ω’) as a Legendra 
series in cosθ. These multiple scattering phase 
functions pi(ω,ω’) are precomputed, and saved for 
each pixel on the faces of the viewing cube shown in 
Figure 2. Then for each ray segment Sj, they are 
multiplied pixelwise by the radiance images on the 
cube and summed to give a convolution sample Kij. 
Finally the Kij are multiplied by the probabilities qij 
and summed over i to get the contribution Ej of the 
segment Sj to the viewing ray through a pixel: 

                   ∑=
i
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If the centers cjkl of a collection of segments Sjkl for a 
region of pixels (k, l) form a continuous surface, 
there is a possible speed-up. The higher order (large 
i) scattering convolutions Kijkl of the radiance images 
are blurred, and thus change slowly with the pixel 
index (k, l). Therefore they can be interpolated from 
a sparser sampling of the pixels in the region. Only 
the probabilities qijkl needs to be computed at every 
pixel. On the other hand, for smaller i, only the front 
face of the cube containing the viewing direction 
need be accurate, because the scattering is mainly 
forward. For even smaller i, only a central section of 
the front face is required. This saves rendering time 
because the clipping to the view frustum is 
performed while traversing the octree hierarchy, so 
clipping eliminates large octree cells, and their 
children are not even considered.  
We used three different viewing cube sampling 
patterns. The first is for the rear five faces of the 
viewing cube in Figure 2: ABCD, AEFB, BFGC, 
CGHD, and DHEA, which are sampled initially 
along rays at every 8 output image pixels in x and y, 
as indicated by the * symbols in Figure 3 below. This 
figure shows the method of computing the 
convolutions for these five faces, for the first low-
density segment, if any, along the viewing rays for 
part of a low resolution image.  
 
    2 1     2 - 4 1                                         
  1 - 1 1 1 - - - 1 1                   1                   
  1 2 - 2 - 2 - - - 2 1             2 - 2 -  
  1 - - - - - - 1 - - 1 1     1 1 1 - - - -  
4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 -  
- - - - - - - - - - - - 1 - - - - - - - - -  
- - - - - - - - - - - - 2 - - - - - 2 - 2 -  
- - - - - - - - - - - - - - - - - - - 1 1 1  
4 - - - * - - - - - - - * - - - 4 - 2 1      
- - - - - - - - - - - - - - - - - - - 1      
2 - 2 - - - - - - - - - - - - - - - 2 - 2    
1 1 1 - - - 1 - - - - - - - - - - - - - -    
  1 2 - - - - - - - - - - - - - 4 - - - 4    
  1 - - - - 1 - - - - - - - - - - - - - -    



  1 2 - - - - - - - - - - - - - - - - - - -  
  1 - - - - - - - - - - - - - - - - - - - -  
    2 - * - - - - - - - * - - - - - - - * - 
  

Figure 3. Convolution computation locations. 
The convolutions Kijkl are bilinearly interpolated to 
the positions indicated by the symbol “–” if the 
values of the distances along the ray at which the 
viewing cubes were placed are close enough. If not, a 
new viewing cube is placed at the appropriate 
distance along the ray, and new values of Kijkl are 
calculated. These new calculations are done 
hierarchically at the vertices of a quadtree, in order to 
find values that may be satisfactory for interpolation 
in one or more sub-squares. Thus a 4 in Figure 3 
indicates a new viewing cube along a ray at an output 
image pixel with x and y coordinates divisible by 4, a 
2 indicates a new viewing cube along a ray at a pixel 
with x and y coordinates divisible by 2, and a 1 
indicates a new viewing cube for a pixel whose x or y 
coordinate is an odd number. A blank indicates that 
the viewing ray had no low-density segments.                                                         
The second sampling pattern was for the front face 
EFGH of the viewing cube, which was initially 
sampled every 4 pixels in x and y, with doubled 
resolution, in order to give more accurate 
interpolated convolutions near the peak of the 
forward scattering phase function. The final pattern 
uses only the center quarter IJKL of the front face of 
the viewing cube, initially sampled every 2 pixels in 
x and y. The total pixels were the same as on the 
front face in the previous case, so the pixel spacing is 
half the spacing on the whole front face, and a 
quarter the spacing on the other five cube faces. This 
central section is disregarded when computing the 
convolution for the whole front face. Thus, every 
direction is counted exactly once in the three 
methods, and the convolutions which have been 
interpolated or computed for each of them can be 
added to get the total convolution for each low-
density ray segment. 
The convolutions are computed hierarchically on 9 
by 9 blocks of pixels, so that when interpolation is 
allowed, the convolutions to be interpolated are 
already known. The blocks are computed in 
horizontal sweeps across the image, so that the left 
hand column of pixels is known from the previous 
block, and the top row of pixels is known from the 
previous sweep of blocks. Thus the convolutions 
need only be saved for the right hand column of the 
previous block, and for one full image row, 
representing the bottom row of the previous sweep’s 
blocks. Once the convolutions are known for the 
low-density segments, equations (8) and (9) are 
evaluated per pixel, and the voxel segments on the 
viewing ray are composited from front to back, using 

either the low-density convolution solution 
(appropriately weighted by the optical depth of the 
voxel segment), the high-density diffusion solution, 
or a density dependent interpolation of the two (in 
order to eliminate aliasing artifacts from switching 
solutions). 

5. RESULTS  
We used the final time step of a cloud simulation 
produced by a hierarchical octree enhancement of the 
simulation method of [Miy02], using the stable semi-
Lagrangian advection scheme of [Stam99] and the 
vorticity confinement method described in [Fed01]. 
The simulation was at resolution 200 x 160 x 120, 
and was averaged down to 100 x 80 x 60 cells for 
rendering. A rectangular solid enclosing the cells 
with non-zero droplet density had size 91 x 51 x 25. 
Figure 4 shows a cloud with only single scattering of 
the sun illumination. Since the phase function for the 
droplets has p1 = g = 0.9, and the scattering is 
strongly peaked in the forward direction, with little 
scattering towards the viewpoint, the cloud is very 
dark and has been artificially brightened. Figure 5 
show the final gather of the diffusion approximation 
solution with both sun and sky illumination, but no 
correction for the low-density boundary regions, and 
no propagation across the clear air. Figure 6 shows 
the added effects of the volume rendering method of 
accounting for the low-density regions at the edge of 
the cloud, using only the initial sun, sky and ground 
illumination in the diffusion solution. Figure 7 shows 
the result of one iteration of the clear air propagation, 
using volume rendering at the border voxels to image 
the clouds. If one flips between Figures 6 and 7 in a 
screen image viewer, one can see that some regions 
of the cloud look brighter in Figure 7. An image 
from two iterations of the clear air propagation is 
indistinguishable from Figure 7. 
Figure 7 took 21 minutes and 33 seconds to compute, 
on a 1.7 GHz Pentium 4 with nVidia GeForce3 
graphics. Of this time, 46 seconds was spent setting 
up and solving the linear equations for diffusing the 
incident sunlight, 2 seconds for setting up the octree 
hierarchy, 227 seconds to render the 12460 viewing 
cubes at the border cells around the clouds, at 
resolution 64 by 64 per face, and the 32 by 32 array 
of hemicubes on the ground sample grid, 94 seconds 
to propagate the flux from the ground, sky, and cloud 
in 96 directions though the cloud, another 46 seconds 
to solve the revised linear equations taking into 
account this extra flux, and 854 seconds to render the 
image, including the time to render the viewing 
cubes at the low-density segments, compute the 
convolutions, interpolate and weight them, and ray 
trace the 480 by 360 image.  



6. DISCUSSION AND FUTURE WORK Figure 8, at a time near sunset, took 24 minutes and 
45 seconds. The final rendering time took longer, 
1034 seconds, because there were more cloud pixels 
in this image, due to different viewing parameters. 

The hardware rendering component of our work 
suffered from the dynamic range limitations of the 8 
bit fixed point format of our graphics hardware 
pipeline. We hope to produce more accurate results 
using floating-point graphics pipelines and frame 
buffers. The computing time and memory sizes limit 
the data resolution for our diffusion and light 
propagation passes, but we hope to add extra 
resolution to the final gather pass, by ray tracing the 
original volume instead of the averaged version, and 
interpolating the radiance solution. We also hope to 
add a subvoxel-resolution Perlin noise texture and to 
advect the texture coordinates using the velocity 
from the weather simulation. 

 
 

 

 

 

Figure 4. Single scattering only. 

 

Figure 7.  Diffusion solution with correction for 
low-density regions, after one iteration of 

propagation through clear air. 

 

Figure 5. Initial diffusion solution. 

 

Figure 8. Image at sunset. 
 
The artifacts near the bottom of Figures 6 and 7 
come from the transitions where two low-density 
segments join into one. The probabilities qij for larger 
numbers of scattering events are higher for the larger 
optical depth of the single low-density segment, so 
that more illumination is included from the sides, and 

Figure 6. Initial diffusion solution with correction 
for low-density regions. 



less from the front. We should add some kind of 
transition to alleviate the edges caused by this abrupt 
switch. Currently for the volume rendering in the 
final gather, all cells except the one containing the 
viewpoint cj are rendered. We should also remove 
any cell intersecting the low-density segment Sj, in 
order to avoid double counting the scattering along 
this segment. 
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